RACAL INSTRUMENTS 1260-152/172
 17 CHANNEL SPDT HIGH FREQUENCY PLUG-IN

PUBLICATION NO. 980824-152/172

EADS North America Defense Test and Services, Inc.
4 Goodyear, Irvine, CA 92618
Tel: (800) 722-2528, (949) 859-8999; Fax: (949) 859-7139
info@eads-nadefense.com
sales@eads-nadefense.com
helpdesk@eads-nadefense.com
http://www.eads-nadefense.com

PUBLICATION DATE: July 08, 2003
Copyright 2000 by EADS North America Defense Test and Services, Inc. Printed in the United States of America. All rights reserved. This book or parts thereof may not be reproduced in any form without written permission of the publisher.

THANK YOU FOR PURCHASING THIS EADS NORTH AMERICA DEFENSE TEST AND SERVICES PRODUCT

For this product, or any other EADS North America Defense Test and Services, Inc. product that incorporates software drivers, you may access our web site to verify and/or download the latest driver versions. The web address for driver downloads is:

http://www.eads-nadefense.com/downloads

If you have any questions about software driver downloads or our privacy policy, please contact us at:
info@eads-nadefense.com

WARRANTY STATEMENT

All EADS North America Defense Test and Services, Inc. products are designed and manufactured to exacting standards and in full conformance to EADS ISO 9001:2000 processes.

This warranty does not apply to defects resulting from any modification(s) of any product or part without EADS North America Defense Test and Services, Inc. express written consent, or misuse of any product or part. The warranty also does not apply to fuses, software, non-rechargeable batteries, damage from battery leakage, or problems arising from normal wear, such as mechanical relay life, or failure to follow instructions.

This warranty is in lieu of all other warranties, expressed or implied, including any implied warranty of merchantability or fitness for a particular use. The remedies provided herein are buyer's sole and exclusive remedies.

For the specific terms of your standard warranty, or optional extended warranty or service agreement, contact your EADS North America Defense Test and Services, Inc. customer service advisor. Please have the following information available to facilitate service.

1. Product serial number
2. Product model number
3. Your company and contact information

You may contact your customer service advisor by:

E-Mail:	Helpdesk@eads-nadefense.com	
Telephone:	+18007223262	(USA)
Fax:	+19498597309	(USA)

RETURN of PRODUCT

Authorization is required from EADS North America Defense Test and Services, Inc. before you send us your product for service or calibration. Call or contact the Customer Support Department at 1-800-722-3262 or 1-949-859-8999 or via fax at 1-949-859-7139. We can be reached at: helpdesk@eads-nadefense.com.

PROPRIETARY NOTICE

This document and the technical data herein disclosed, are proprietary to EADS North America Defense Test and Services, Inc., and shall not, without express written permission of EADS North America Defense Test and Services, Inc., be used, in whole or in part to solicit quotations from a competitive source or used for manufacture by anyone other than EADS North America Defense Test and Services, Inc. The information herein has been developed at private expense, and may only be used for operation and maintenance reference purposes or for purposes of engineering evaluation and incorporation into technical specifications and other documents which specify procurement of products from EADS North America Defense Test and Services, Inc.

DISCLAIMER

Buyer acknowledges and agrees that it is responsible for the operation of the goods purchased and should ensure that they are used properly and in accordance with this handbook and any other instructions provided by Seller. EADS North America Defense Test and Services, Inc. products are not specifically designed, manufactured or intended to be used as parts, assemblies or components in planning, construction, maintenance or operation of a nuclear facility, or in life support or safety critical applications in which the failure of the EADS North America Defense Test and Services, Inc. product could create a situation where personal injury or death could occur. Should Buyer purchase EADS North America Defense Test and Services, Inc. product for such unintended application, Buyer shall indemnify and hold EADS North America Defense Test and Services, Inc., its officers, employees, subsidiaries, affiliates and distributors harmless against all claims arising out of a claim for personal injury or death associated with such unintended use.

FOR YOUR SAFETY

Before undertaking any troubleshooting, maintenance or exploratory procedure, read carefully the WARNINGS and CAUTION notices.

If this instrument is to be powered from the AC line (mains) through an autotransformer, ensure the common connector is connected to the neutral (earth pole) of the power supply.

Before operating the unit, ensure the conductor (green wire) is connected to the ground (earth) conductor of the power outlet. Do not use a two-conductor extension cord or a three-prong/two-prong adapter. This will defeat the protective feature of the third conductor in the power cord.

Before operating this instrument:

1. Ensure the proper fuse is in place for the power source to operate.
2. Ensure all other devices connected to or in proximity to this instrument are properly grounded or connected to the protective third-wire earth ground.

If the instrument:

- fails to operate satisfactorily
- shows visible damage
- has been stored under unfavorable conditions
- has sustained stress

Do not operate until, performance is checked by qualified personnel.

Racal Instruments

EC Declaration of Conformity

We
Racal Instruments Inc.
4 Goodyear Street
Irvine, CA 92718
declare under sole responsibility that the

1260-152, 1260-172
High Frequency Coaxial Switch Modules 407742-003, 407742-004
conform to the following Product Specifications:

Safety: EN 61010-1

EMC: EN50081-1
CISPR 11:1990/EN 55011 (1991): Group 1 Class A
IEC 801-2:1991/EN 50082-1 (1992): 4 kV CD, 8 kV AD
IEC 801-3:1984/EN 50082-1 (1992): $3 \mathrm{~V} / \mathrm{m}, 27-500 \mathrm{MHz}$
IEC 801-4:1988/EN 50082-1 (1992): 1 kV

Supplementary Information:

The above specifications are met when the product is installed in a Racal Instruments Adapt-a-Switch Carrier with faceplates installed over all unused slots, as applicable. The carrier is installed in a certified mainframe.

The product herewith complies with the requirements of the Low Voltage Directive 73/23/EEC and the EMC Directive 89/336/EEC.

Irvine, CA, April 23, 2001

This page was left intentionally blank.

Table of Contents

Chapter 1 1-1
SPECIFICATIONS 1-1
Introduction. 1-1
Specifications 1-2
Power Dissipation. 1-3
About MTBF 1-4
Ordering Information 1-5
Chapter 2 2-1
INSTALLATION INSTRUCTIONS 2-1
Unpacking and Inspection 2-1
Reshipment Instructions 2-1
Installation 2-1
Module Configurations 2-2
Front Panel Connectors 2-2
Mating Connectors 2-4
Chapter 3 3-1
MODULE OPERATION. 3-1
Setting the Module Address 3-1
1256 Operation. 3-1
VXI Operating Modes 3-1
Operating In VXI Message-Based Mode 3-3
Channel Descriptors For The 1260-152/172 3-3
Reply To The MOD:LIST? Command 3-4
Operating in VXI Register-Based Mode 3-4
1260-152/172 Example Code 3-8
Chapter 4 4-1
OPTIONAL ASSEMBLIES 4-1
Chapter 5 5-1
PRODUCT SUPPORT 5-1
Product Support 5-1
Warranty 5-1

List of Figures

Figure 1-1, 1260-152/172 1-1
Figure 2-1, Front-Panel Connector Pin Numbering 2-2
Figure 2-2, Relay Diagram 2-3
Figure 2-3, Block Diagram 2-4
Figure 3-1, Message-Based Mode of Operation 3-2
Figure 3-2, Register-Based Mode of Operation 3-2

List of Tables

Table 2-1, 1260-152/172 Front-Panel Connections 2-3
Table 3-1, Control Register Channel Assignments 3-6

This page was left intentionally blank.

Chapter 1 SPECIFICATIONS

The 1260-152/172 is an RF plug-in switch module developed for a variety of platforms, such as the 1260-100 Adapt-a-Switch Carrier and the 1256 Switching System. The 1260-152/172 includes the following features:

- Standard Adapt-a-Switch ${ }^{\text {TM }}$ and 1256 Switching System plug-in design, providing for ease of replacement.
- Data-Driven embedded descriptor, allowing immediate use with any Option-01T or 1256 switch controller, regardless of firmware revision level.
- 17 High Frequency channels of SPDT switching.

Figure 1-1, 1260-152/172

Specifications

Characteristic Impedance		
1260-152	50Ω	
1260-172	75Ω	
Bandwidth (-3dB)		
1260-152	$\geq 1.2 \mathrm{GHz}$	
1260-172	$\geq 900 \mathrm{MHz}$	
Insertion Loss, 500MHz		
1260-152	$\leq 0.5 \mathrm{~dB}$ to 300 MHz	
	$\leq 0.75 \mathrm{~dB}$ to 600 MHz	
	$\leq 0.9 \mathrm{~dB}$ to 900 MHz	
1260-172	$\leq 0.5 \mathrm{~dB}$ to 300 MHz	
	$\leq 1.5 \mathrm{~dB}$ to 600 MHz	
VSWR		
1260-152	to 900 MHz	$\leq 1.1: 1$ to 100 MHz
		$\leq 1.6: 1$ to 500 Mz
		$\leq 2.0: 1$ to 900 MHz
1260-172	to 600 MHz	$\leq 1.5: 1$ to 100 MHz
		$\leq 2.1: 1$ to 500 MHz

Isolation
$500 \mathrm{MHz} \quad \geq 85 \mathrm{~dB}$ to 100 MHz
$\geq 55 \mathrm{~dB}$ to 600 MHz
$\geq 45 \mathrm{~dB}$ to 900 MHz
Crosstalk
$500 \mathrm{MHz} \leq-80 \mathrm{~dB}$ to 100 MHz
$\leq-55 \mathrm{~dB}$ to 600 MHz
$\leq-50 \mathrm{~dB}$ to 900 MHz
Maximum Switching Voltage

AC	30 VAC peak
DC	30 VDC

Switching Current

AC	0.50 AAC peak
DC	0.50 A

Switching Power
AC
10VA
DC 10W

Path resistance	$<1 \Omega$
Insulation resistance	$>10^{9} \Omega$
Relay Settling Time	$<10 \mathrm{~ms}$

Shock	$30 \mathrm{~g}, 11 \mathrm{~ms}, 1 / 2$ sine wave
Vibration	0.013 in. $\mathrm{P}_{\mathrm{k}}-\mathrm{P}_{\mathrm{k}}, 5-55 \mathrm{~Hz}$
Bench Handling	$4 \mathrm{in} ., 45^{\circ}$
Cooling	See 1260-100 cooling data
Temperature	
Operating	$0^{\circ} \mathrm{C}$ to $+55^{\circ} \mathrm{C}$
Non-operating	$-40^{\circ} \mathrm{C}$ to $+75^{\circ} \mathrm{C}$
Relative Humidity	$85 \% \pm 5 \%$ non-condensing at $<30^{\circ} \mathrm{C}$
Altitude	
Operating	10,000 feet
Non-operating	15,000 feet
Power Requirements	
+5VDC	150mA + 40mA per energized relay (850mA Max.)
Weight	9oz. (0.26kg)
MTBF	>300,000 hours (MIL-HDBK-217E)
Dimensions	4.5"H X 0.75"W X 9.5"D

Power Dissipation

While the cooling of the Adapt-a-Switch carrier is dependent upon the chassis into which it is installed, the carrier can normally dissipate approximately 100 W . Care must be taken, then, in the selection and loading of the plug-in modules used in the carrier. It is not possible to fully load the carrier, energize every relay, and run full power through every set of contacts, all at the same time. In practice this situation would never occur.

To properly evaluate the power dissipation of the plug-in modules, examine the path resistance, the current passing through the relay contacts, the ambient temperature, and the number of relays closed at any one time.

For example, if a 1260-152/172 module (containing 17 relays) has all relays closed, passing a current of 0.5 A , then:

Total power dissipation =
[(current) ${ }^{2}$ (path resistance) * 17] + (quiescent power)
By substituting the actual values:
Total power dissipation = $\left[(0.5 \mathrm{~A})^{2} *(1 \Omega) * 17\right]+(5 \mathrm{~W})=9.25 \mathrm{~W}$ at $55^{\circ} \mathrm{C}$

This is acceptable power dissipation for an individual plug-in module. If five additional modules are likewise loaded, then the overall carrier dissipation is approximately 56 W , which is well within the cooling available in any commercial VXIbus chassis. In practice, rarely are more than 25% of the module's relays energized simultaneously, and rarely is full rated current run through every path. In addition, the actual contact resistance is typically one-half to one-fourth the specified maximum, and temperatures are normally not at the rated maximum. The power dissipated by each plug-in should be no more than 15 W if all six slots are used simultaneously. Consult the Power Dissipation Section of any other 1260 Adapt-a-Switch card manuals for additional information.

Most users of a signal-type switch, such as the 1260-152/172, switch no more than a few hundred milliamperes and are able to energize all relays simultaneously, should they so desire.

Additionally, if fewer plug-in modules are used, more power may be dissipated by the remaining cards. By using a chassis with high cooling capacity, such as the 1261B, almost any configuration may be realized.

About MTBF

The 1260-152/172 MTBF is $>300,000$ hours, calculated in accordance with MIL-HDBK-217E, with the exception of the electromechanical relays. Relays are excluded from this calculation because relay life is strongly dependent upon operating conditions. Factors affecting relay life expectancy are:

1. Switched voltage
2. Switched current
3. Switched power
4. Maximum switching capacity
5. Maximum rated carrying current
6. Load type (resistive, inductive, capacitive)
7. Switching repetition rate
8. Ambient temperature

The most important factor is the maximum switching capacity, which is an interrelationship of maximum switching power, maximum switching voltage and maximum switching current. When a relay operates at a lower percentage of its maximum switching capacity, its life expectancy is longer. The maximum switching capacity specification is based on a resistive load, and must be further de-rated for inductive and capacitive loads.

For more details about the above life expectancy factors, refer to
the data sheet for the switch plug-in module.
The relays used on the 1260-152/172 plug-ins are P/N's 310157001and 310289. The manufacturer's specifications for these relays are:

Life Expectancy Mechanical 1,000,000 operations Electrical

$$
\begin{aligned}
& 100,000 \text { operations at } 1 \mathrm{~W} \text { RF load } \\
& \text { or } 10 \mathrm{~mA} 24 \mathrm{VDC} \text { (resistive) }
\end{aligned}
$$

For additional relay specifications, refer to the relay manufacturer's data sheet.

Ordering Information

Listed below are part numbers for both the 1260-152/172 switch modules and available mating connector accessories. Each 1260152/172 uses two mating connectors, provided in the Shipping Kit. Coax pins or cables must be ordered separately.

ITEM	DESCRIPTION	PART \#
1260-152 Switch Module	50Ω 17CH SPDT Coax Switch Module	$407742-003$
1260-172 Switch Module	75Ω 17CH SPDT Coax Switch Module	$407742-004$
Shipping Kit	Mating connectors (2) and manual	$407653-152 / 172$
Mating Connector	Spare 26 Pin Housing	$602221-126$
Coax Pin	Coax Pin	$602221-903$
Cable Assy. 2ft, 50Ω	Single Coax Cable w/connectors	$407746-001$
Cable Assy. 6ft, 50Ω	Single Coax Cable w/connectors	$407746-003$
Cable Assy. 12ft, 50Ω	Single Coax Cable w/connectors	$407746-006$
Cable Assy. 2ft, 75Ω	Single Coax Cable w/connectors	$407747-001$
Cable Assy. 6ft, 75Ω	Single Coax Cable w/connectors	$407747-003$
Cable Assy. 12ft, 75Ω	Single Coax Cable w/connectors	$407747-006$
Additional Manual	User Manual	$980824-152 / 172$

This page was left intentionally blank.

Chapter 2

INSTALLATION INSTRUCTIONS

Unpacking and Inspection

1. Remove the 1260-152/172 module and inspect it for damage. If any damage is apparent, inform the carrier immediately. Retain shipping carton and packing material for the carrier's inspection.
2. Verify that the pieces in the package you received contain the correct 1260-152/172 module option and the 1260-152/172 Users Manual. Notify EADS North America Defense Test and Services, Inc. if the module appears damaged in any way. Do not attempt to install a damaged module into a VXI chassis.
3. The $1260-152 / 172$ module is shipped in an anti-static bag to prevent electrostatic damage to the module. Do not remove the module from the anti-static bag unless it is in a staticcontrolled area.

Reshipment Instructions

Installation

1. Use the original packing when returning the switching module to EADS North America Defense Test and Services, Inc. for calibration or servicing. The original shipping carton and the instrument's plastic foam will provide the necessary support for safe reshipment.
2. If the original packing material is unavailable, wrap the switching module in an ESD Shielding bag and use plastic spray foam to surround and protect the instrument.
3. Reship in either the original or a new shipping carton.

Installation of the 1260-152/172 Switching Module into a 1260-100 Carrier assembly is described in the Installation section of the 1260-100 Adapt-a-Switch Carrier Manual, P/N 980824-100. The installation of the 1260-152/172 Switching Module into a 1256 Chassis is described in the installation section of the 1256 Manual, P/N 980855.

Module Configurations

The 1260-152 and the 1260-172 are high frequency coaxial switch modules each containing 17 channels of SPDT (single-pole double-throw) switches. The 1260-152 uses 50Ω coaxial cable and the 1260-172 uses 75Ω coaxial cable. Otherwise, the two modules are functionally equivalent.

Front Panel Connectors

The 1260-152/172 has two 26-pin front-panel connectors, labeled J200 and J201. It is a 26-pin, MIL-DTL-28748 style, with shielded coaxial pins. See Figure 2-1 for pin numbering. Table 2-1 shows the mapping of channel numbers to connector pins. Information about available mating connectors is provided immediately after Table 2-1. See Figure 2-2 for a detail of the actual relay. See Figure 2-3 for a block diagram of the 1260-152/172.

Figure 2-1, Front-Panel Connector Pin Numbering

Table 2-1, 1260-152/172 Front-Panel Connections

Channel Number	Common	Normally Closed	Normally Open
0	J200-C	J200-A	J200-E
1	J200-K	J200-H	J200-M
2	J200-D	J200-B	J200-F
3	J200-L	J200-J	J200-N
4	J200-S	J200-P	J200-U
5	J200-Y	J200-W	J200-AA
6	J200-T	J200-R	J200-V
7	J200-Z	J200-X	J200-BB
8	J201-C	J201-A	J201-E
9	J201-K	J201-H	J201-M
10	J201-D	J201-B	J201-F
11	J201-L	J201-J	J201-N
12	J201-S	J201-P	J201-U
13	J201-Y	J201-W	J201-AA
14	J201-T	J201-R	J201-V
15	J201-Z	J201-X	J201-BB
16	J201-CC	J200-DD	J201-DD

Figure 2-2, Relay Diagram

Figure 2-3, Block Diagram

Mating connector accessories are available:
26-Pin Connector, P/N 602221-126 and pins, P/N 602221-903

The 26 pin connectors are provided as part of the 1260-152/172 Shipping Kit. Mating Pins or Cable assemblies must be ordered separately. Refer to the Ordering Information section of this manual.

If mating pins are used, the suggested hand tool for the Crimp Pins is P/N 991034. After cable attachment, the pin is inserted into the housing and will snap into place, providing positive retention. The corresponding pin removal tool is P/N 990922.

Chapter 3

MODULE OPERATION

Setting the Module Address

1256 Operation

VXI Operating Modes

Both the Option-01T and 1256 switch controllers identify each Adapt-a-Switch plug-in by a module address that is unique to that module.

For setting the module address of the 1260-152 and 1260-172 refer to one of the following manuals.

- 1260-100 Adapt-a-Switch Manual - Publication No. 980824100
- 1256 User Manual - Publication No. 980855

For a detailed description of the use of the 1260-152 and 1260-172 when they are being used in a 1256 Switch Controller, refer to the 1256 User Manual (P/N 980855).

The 1260-152/172 may be operated either in message-based mode or in register-based mode when used with an Adapt-a-switch Carrier in a VXI chassis.

In the message-based mode, the 1260-01T switch controller interprets commands sent by the slot 0 controller, and determines the appropriate data to send to the control registers of the 1260$152 / 172$ module.

A conceptual view of the message-based mode of operation is shown in Figure 3-1 below.

Figure 3-1, Message-Based Mode of Operation

In the register-based mode, the user writes directly to the control registers on the 1260-152/172 module. The 1260-01T command module does not monitor these operations, and does not keep track of the relay states on the 1260-152/172 module in this mode.

A conceptual view of the register-based mode is shown in Figure 3-2 below.

Figure 3-2, Register-Based Mode of Operation

Since the 1260-01T switch controller does not keep track of relay states during the register-based mode, it is advisable to use either the message-based or the register-based mode, and continue to use the same mode throughout the application program.

In general, the message-based mode of operation is easier to use with utility software such as the National Instruments VXI Interactive Control (VIC) program. The message-based mode allows the user to send ASCII text commands to the 1260-01T and to read replies from the 1260-01T. In addition, some features, such as the SCAN list, are available only in the message-based mode of operation.

The register-based mode provides faster control of relay channels.

In this mode, relay operations are processed in less than 9 microseconds, not counting relay settling time or software overhead inherent in I/O libraries such as VISA. To determine the relay settling time, refer to Relay Settling Time in the Specifications section.

Consult the 1260-01T User's Manual for a comparison of the message-based and register-based modes of operation.

Operating In VXI Message-Based Mode

Channel Descriptors For The 1260-152/172

The standard 1260-01T commands are used to operate the 1260152/172 module. These commands are described in the 1260-01T User's Manual.

Each 1260-01T relay command uses a channel descriptor to select the channel(s) of interest. The syntax for a channel descriptor is the same for all 1260 series modules. In general, the following syntax is used to select a single channel:
(@ <module address> (<channel>))

Where:

- <module address> is the address of the $1260-152 / 172$ module. This is a number is in the range from 1 through 12, inclusive.
- <channel range> is a list of channels to operate. Each channel is a two-digit number. Thus, the valid channel numbers are:

0 through 16
When listing multiple channels, separate the channels with a comma (,). To select a contiguous range of channels, specify the first and last channels, and separate them by a colon (:).

The following examples illustrate the use of the channel descriptors for the 1260-152/172, with a module address of 8.

OPEN $(@ 8(0))$	Open channel 0.
OPEN $(@ 8(10))$	Open channel 10.
CLOSE $(@ 8(9))$	Close channel 9 on the $1260-$
	$152 / 172$.
CLOSE $(@ 8(11,13))$	Close channels 11 and 13 on the
	$1260-152 / 172$.

OPEN (@8(0:16)) Open channels 0 through 16 (all channels) on the 1260-152/172.
CLOSE (@8(0,10:16)) Close channels 0,10, through 16 on the 1260-152/172.

Reply To The MOD:LIST? Command

The 1260-01T returns a reply to the MOD:LIST? command. This reply is unique for each different 1260 series switch module. The syntax for the reply is:
<module address> : <module-specific identification string>
The <module-specific identification string> for the 1260-152/172 are:

```
1260-152 HIGH FREQUENCY 50 OHM SWITCH
or
1260-172 HIGH FREQUENCY 75 OHM SWITCH
```

So, for a 1260-152 whose <module address> is set to 8, the reply to this query would be:

$$
8 \text { : 1260-152 HIGH FREQUENCY } 50 \text { OHM SWITCH }
$$

Operating in VXI

 Register-Based ModeIn register-based mode, the $1260-152 / 172$ is operated by directly writing and reading control registers on the 1260-152/172 module. The first control register on the module operates channels 0 through 7. The second control register operates channels 8 through 15. The third control register operates channel 16. When a control register is written to, all channels controlled by that register are operated simultaneously.

The control registers are located in the VXIbus A24 Address Space. The A24 address for a control register depends on:

1. The A24 Address Offset assigned to the 1260-01T module by the Resource Manager program. The Resource Manager program is provided by the VXIbus slot-0 controller vendor. The A24 Address Offset is placed into the "Offset Register" of the 1260-01T by the Resource Manager.
2. The <module address> of the 1260-152/172 module. This is a value in the range from 1 and 12 inclusive.
3. The 1260-152/172 control register to be written to or read from. Each control register on the 1260-152/172 has a unique
address.
The base A24 address for the 1260-152/172 module may be calculated by:
(A24 Offset of the 1260-01T) $+(1024 \times$ Module Address of 1260-152/172).

The A24 address offset is usually expressed in hexadecimal. A typical value of 204000_{16} is used in the examples that follow.

A 1260-152/172 with a module address of 7 would have the base A24 address computed as follows:

Base A24 Address of $1260-152 / 172=204000_{16}+\left(400_{16} \mathrm{X}\right.$ $\left.7_{10}\right)=205 C 00_{16}$

The control registers for Adapt-a-Switch plug-ins and conventional 1260 -Series modules are always on odd-numbered A24 addresses. The three control registers for the 1260-152/172 reside at the first three odd-numbered A24 addresses for the module:
(Base A24 Address of 1260-152/172) $+1=$ Control Register 0
(Base A24 Address of 1260-152/172) +3 = Control Register 1
(Base A24 Address of 1260-152/172) $+5=$ Control Register 2
So, for our example, the three control registers are located at:
205C01 Control Register 0, controls channels 0 through 7.

205C03 Control Register 1, controls channels 8 through 15.

205C05 Control Register 2, controls channel 16.
Table 3-1 shows the channel assignments for each control register.

Table 3-1, Control Register Channel Assignments

Control Register	Channels								
	Bit 7 (MSB)	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0 (LSB)	
$\mathbf{0}$	7	6	5	4	3	2	1	0	
$\mathbf{1}$	15	14	13	12	11	10	9	8	
$\mathbf{2}$	X	16							

Setting a control bit to 1 closes the corresponding channel, and clearing the bit to zero opens the corresponding channel. Thus, if you write the value 10000101 binary $=133$ decimal $=85$ hexadecimal to Control Register 0, channels 0, 2, and 7 will close, while channels $1,3,4,5$, and 6 will open.

The present control register value may be read back by reading an 8 -bit value from the control register address. The value is inverted. In other words, the eight-bit value read back is the one's complement of the value written.

If you want to change the state of a single relay without affecting the present state of the other relays controlled by the control register, you must:

1. Read the control register.
2. Invert the bits (perform a one's complement on the register data).
3. Perform a bit-wise AND operation, leaving all but the specific control register bit for the relay to change.
4. To open: continue to step 5. To close: OR in the bit for the relay to close.
5. Write the modified value back to the control register.

For example, to close channel 13:

1. Read Control Register 1 (this register controls channels 8 through 15, with channel 8 represented by the LSB).
2. Invert the bits in the value read in step 1.
3. AND with 11011111 binary (the zero is in the position corresponding to channel 13).
4. OR with 00100000 binary.
5. Write the value to Control Register 1.

The VISA I/O library may be used to control the module. The VISA function viOut8() is used to write a single 8-bit byte to a control register, while viIn8() is used to read a single 8-bit byte from the control register. The following code example shows the use of viOut8() to update the 1260-152/172 module.

1260-152/172
 Example Code

\#include <visa.h>
/* This example shows a 1260-01T at logical address 16 and a VXI/MXI */
/* interface */
\#define RI1260_01_DESC "VXI::16"
/* For a GPIB-VXI interface, and a logical address of 77 */
/* the descriptor would be: "GPIB-VXI::77" */
/* this example shows a 1260-152/172 with module address 7 */ \#define MOD_ADDR_152 7

```
void example_operate_1260_152(void)
{
    ViUInt8 creg_val;
    ViBusAddress creg0_addr;
    ViBusAddress creg1_addr;
    ViBusAddress creg2_addr;
    ViSession hdl1260; /* VISA handle to the 1260-01T */
    ViSession hdlRM; /* VISA handle to the resource manager */
    ViStatus error; /* VISA error code */
    /* open the resource manager */
    /* this must be done once in application program */
    error = viOpenDefaultRM (&hdlRM);
    if (error < 0) {
        /* error handling code goes here */
    }
    /* get a handle for the 1260-01T */
    error = viOpen (hdlRM, RI1260_01_DESC, VI_NULL,VI_NULL, &hdl1260);
    if (error < 0) {
        /* error handling code goes here */
    }
```

/* form the offset for control register 0 */
/* note that the base A24 Address for the 1260-01T */
/* is already accounted for by VISA calls viIn8() and */
/* viOut8() */
/* module address shifted 10 places = module address x 1024 */
creg0_addr $=($ MOD_ADDR_152 << 10) + 1;
creg1_addr = creg0_addr + 2;
creg2_addr = creg1_addr + 2;
/* close channel 13 without affecting the state of */
/* channels 8, 9, 10, 11, 12, 14, and 15 */
error = viIn8 (hdl1260, VI_A24_SPACE, creg1_addr, \&creg_val);
if (error < 0) \{
/* error handling code goes here */
\}
/* invert the bits to get the present control register value */ creg_val = ~creg_val;
/* AND to leave every channel except 13 unchanged */ creg_val \&= ~ (0x20);
/* OR in the bit to close channel 13 */
creg_val |= 0x20;
/* write the updated control register value */
error = viOut8 (hdl1260, VI_A24_SPACE, creg1_addr, creg_val);
if (error < 0) \{
/* error handling code goes here */
\}
/* close the VISA session */
error = viClose(hdl1260);
if (error < 0) \{
/* error handling code goes here */
\}
\}

This page was left intentionally blank.

Chapter 4

OPTIONAL ASSEMBLIES

Part Number Description
407746-001 Cable Assy, 50Ω 4-3
407747-001 Cable Assy, 75Ω 4-5

This page was left intentionally blank.

Rev Date 12/08/00 Revision A

RACAL INSTRUMENTS INC.
Product Structure Report By Assembly/Balloon No.

Low Level Cd
PAGE 1
12/08/00

$\#$	Component	Description	U/M	Qty Reqd Ty	Engineer Txt
1	$602221-903$	CON-CXL-RCP001C.	- E EA	2.00000	
2	$50029 S$	CACX-SHD-01C26G-1STR500HM	-E FT	.00001	
2	SP-152-CA	1260 CARD PAK	EA	1.00000	

** END OF DATA **

RACAL INSTRUMENTS INC.

PAGE 1
Product Structure Report
By Assembly/Balloon No.
Assembly 407746-003
Low Level Cd
U/M EA CABLE ASSY,50 OHM,HV,6FT
Rev Date 12/08/00 Revision A

$\#$	Component	Description	U/M	Qty Reqd Ty	Engineer Txt
1	$602221-902$	CON-CXL-RCP001C.	- E EA	2.00000	
2	500295	CACX-SHD-01C26G-1STR500HM	-E FT	.00001	
3	SP-152-CA	1260 CARD PAK	EA	1.00000	

** END OF DATA **

P5R350
1 SNL
RACAL INSTRUMENTS INC.
PAGE 1
Product Structure Report
12/08/00 By Assembly/Balloon No.

Low Level Cd Rev Date 12/08/00 Revision A
Assembly $407746-006$
U/M EA CABLE ASSY, 50 OHM, HV, 12FT

$\#$	Component	Description	U/M	Qty Reqd Ty	Engineer Txt
1	$602221-903$	CON-CXL-RCP001C.	-E EA	2.00000	
2	500295	CACX-SHD-01C26G-1STR500HM	-E FT	.00001	
3	SP-152-CA	1260 CARD PAK	EA	1.00000	

** END OF DATA **

RACAL INSTRUMENTS INC.
Product Structure Report
PAGE 1

By Assembly/Balloon No.
Low Level Cd
Rev Date 12/08/00 Revision A

Assembly 407747-001
U/M EA CABLE ASSY, 75 OBM,BV,2FT

$\#$	Component	Description	U/M	Qty Reqd Ty	Engineer Txt
1	$602221-903$	CON-CXL-RCP001C.	-E EA	2.00000	
2	500269	CACX-BRD-02C30G-1STR	-E FT	.00001	
3	SP-152-CA	1260 CARD PAK	EA	1.00000	

** END OF DATA **

P5R350 1 SNL
RACAL INSTRUMENTS INC.
PAGE 1
Product Structure Report
12/08/00
By Assembly/Balloon No.
Low Level Cd
Rev Date 12/08/00 Revision A

Assembly 407747-003
U/M EA CABLE ASSY, 75 OHM,HV,6FT

$\#$	Component	Description	U/M	Qty Reqd Ty	Engineer Txt
1	$602221-903$	CON-CXL-RCP00TC.	-E EA	2.00000	
2	500269	CACX-BRD-02C30G-1STR	-E FT	.00001	
3	SP-152-CA	1260 CARD PAK	EA	1.00000	

** END OF DATA **

P5R350
1 SNL
RACAL INSTRUMENTS INC.
PAGE 1
Product Structure Report 12/08/00
By Assembly/Balloon No.
Low Level Cd
Rev Date 12/08/00 Revision A

$\#$	Component	Description	U/M	Qty Reqd Ty	Engineer Txt
1	$602221-903$	CON-CXL-RCP001C.	-E EA	2.00000	
2	500269	CACX-BRD-02C30G-1STR	-E FT	.00001	
3	SP-152-CA	1260 CARD PAK	EA	1.00000	

** END OF DATA **

Chapter 5

PRODUCT SUPPORT

Product Support

Warranty

EADS North America Defense Test and Services, Inc. has a complete Service and Parts Department. If you need technical assistance or should it be necessary to return your product for repair or calibration, call 1-800-722-3262. If parts are required to repair the product at your facility, call 1-949-859-8999 and ask for the Parts Department.

When sending your instrument in for repair, complete the form in the back of this manual.

For worldwide support and the office closest to your facility, refer to the website for the most complete information http://www.eadsnadefense.com.

Use the original packing material when returning the 1260-152/172 to EADS North America Defense Test and Services, Inc. for calibration or servicing. The original shipping container and associated packaging material will provide the necessary protection for safe reshipment.

If the original packing material is unavailable, contact EADS North America Defense Test and Services, Inc. Customer Service at 1-800-722-3262 for information.

REPAIR AND CALIBRATION REQUEST FORM

To allow us to better understand your repair requests, we suggest you use the following outline when calling and include a copy with your instrument to be sent to the EADS North America Defense Test and Service, Inc. Repair Facility.

